The Droz-Farny Circles of a Convex Quadrilateral

نویسندگان

  • Maria Flavia Mammana
  • Biagio Micale
  • Mario Pennisi
  • M. F. Mammana
  • B. Micale
  • M. Pennisi
چکیده

(a) If we consider the intersections of the circle Hi(O) (center Hi and radius HiO) with the line Ai+1Ai+2, then we obtain six points which all lie on a circle with center H (first Droz-Farny circle). (b) If we consider the intersections of the circle Mi(H) (center Mi and radius MiH) with the line AiAi+1, then we obtain six points which all lie on a circle with center O (second Droz-Farny circle). The property of the first Droz-Farny circle is a particular case of a more general property (first given by Steiner and then proved by Droz-Farny in 1901 [2]). Fix a segment of length r, if for i = 1, 2, 3, the circle with center Ai and radius r

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Porism Associated with the Euler and Droz-Farny Lines

The envelope of the Droz-Farny lines of a triangle is determined to be the inconic with foci at the circumcenter and orthocenter by using purely Euclidean means. The poristic triangles sharing this inconic and circumcircle have a common circumcenter, centroid and orthocenter.

متن کامل

Angle and Circle Characterizations of Tangential Quadrilaterals

We prove five necessary and sufficient conditions for a convex quadrilateral to have an incircle that concerns angles or circles.

متن کامل

A convex combinatorial property of compact sets in the plane and its roots in lattice theory

K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...

متن کامل

Diamond-Kite Meshes: Adaptive Quadrilateral Meshing and Orthogonal Circle Packing

We describe a family of quadrilateral meshes based on diamonds, rhombi with 60◦ and 120◦ angles, and kites with 60◦, 90◦, and 120◦ angles, that can be adapted to a local size function by local subdivision operations. The vertices of our meshes form the centers of the circles in a pair of dual circle packings in which each tangency between two circles is crossed orthogonally by a tangency betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011